Fourier Analysis

Feb 10, 2022.

1. Review.

For re (0,1), define $P_r(x) = \frac{1-r^2}{1-2r\cos x+r^2}$ $= \sum_{n=-\infty}^{\infty} r^{inl} e^{inx}$ Then (Pr) is called the Poisson kernel 0s r→1. Let f be integrable on the Circle. Corollary: Then $P_r * f(x) \rightarrow f(x)$ if f is cts at x (\mathbf{I}) as $r \rightarrow 1$ Whenever f is cts on the circle, 2 $P_r * f \Rightarrow f = 0 r + 1$

Recall that

$$P_r * f(x) = \sum_{n=-\infty}^{\infty} r^{|n|} \hat{f}(n) e^{inx}$$

$$(:= A_r f(x) - Abel mean$$
of the fourier series of f)

Consider the heat distribution on a (very thin) metal plate.

$$U(x, y, t)$$
 —— the temperature at the point (x, y) at time t.

Then
$$\mathcal{U}$$
 satisfies the following

$$\frac{\partial \mathcal{U}}{\partial t} = \frac{\partial^2 \mathcal{U}}{\partial x^2} + \frac{\partial^2 \mathcal{U}}{\partial y^2}, \quad (x, y) \in \mathbb{R}^2, \quad t > 0$$

In the special case when U is independent of t,
then
$$U = U(x,y)$$
 satisfies
 $0 = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}$, $(x,y) \in \mathbb{R}^2$
(steady-state heat equation)

Now consider the unit disc

$$D := \{(x,y): x^2 + y^2 < 1\}.$$

We want to consider

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 , \quad (x, y) \in D$$

We would like to re-express D and the heat equation in the polar coordinates:

Thm 1. Let
$$f$$
 be integrable on the circle.
Let $\mathcal{U}(r, \theta) := \Pr_r * f(\theta)$, $0 \le r < 1$, $0 \le \theta < 2\pi$.
Then (1) $\mathcal{U} \in C^2(D)$. Moreover
 $\Delta U := \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial \theta^2} = 0$
 \mathcal{A}
(Laplace operator)
(2) If f is cts at θ , then
 $\lim_{r \to 1} \mathcal{U}(r, \theta) = f(\theta)$.

Recall:
Let J be an interval on R.
Suppose
$$(f_n)$$
 is a sequence of cts functions
on J such that
 $D \quad f_n(x_0) \longrightarrow f(x_0)$
 $@ \quad f'_n \Longrightarrow g \quad on J$
Then $\exists \ f \ s.t$
 $f_n \rightrightarrows f \quad on J$
and $f' = g$.

As a special consequence, if

$$\sum_{n=1}^{N} S_{n}(x) \rightarrow S(x) \quad \text{for all } x \in J$$
and
$$\sum_{n=1}^{N} S_{n}'(x) \rightarrow g(x) \quad \text{on } J,$$

$$\sum_{n=1}^{N} S_{n}'(x) \rightarrow g(x) \quad \text{on } J,$$

$$as N \rightarrow bo. \quad \text{Then } S'(x) = g(x) \quad \text{on } J, \text{ i.e.}$$

$$\frac{d}{dx} \left(\sum_{n=1}^{\infty} S_{n}(x) \right) = \sum_{n=1}^{\infty} \frac{d}{dx} S_{n}(x) \quad \text{on } J.$$

$$\frac{Pf \cdot g \cdot Thm 1 (i) :}{We \quad first \quad show \quad U \in C^{2}(D).}$$

$$\frac{Recult \quad that}{P_{r} \ast f(0) = \sum_{n=-\infty}^{\infty} r^{(n)} \quad f_{(n)} e^{in\theta}, \\ 0 < r < 1, 0 < 0 < 2n}$$
Notice that the above series converges uniformly
$$on \quad the \quad region \\ \begin{cases} (r, 0) : \quad o < r < \rho \\ \end{cases}$$
for any $o < \rho < 1$.
$$Also, \quad \sum_{n=-\infty}^{\infty} \quad \frac{\partial}{\partial r} \left(r^{(n)} \quad f_{(n)} e^{in\theta} \right) \\ \sum_{n=-\infty}^{\infty} \quad \frac{\partial}{\partial 0} \left(r^{(n)} \quad f_{(n)} e^{in\theta} \right)$$

$$Converge \quad uniformly \quad on \quad \{ (r, 0) : \quad o < r < \rho \\ \}$$

Hence
$$\frac{\partial}{\partial r} \left(P_r \star f \right)$$

= $\sum_{n=-\infty}^{\infty} \frac{\partial}{\partial r} \left(r^{(n)} \hat{f}_{(n)} e^{in\theta} \right)$

$$\frac{\partial}{\partial \theta} \left(\begin{array}{c} Pr * f \end{array} \right) = \sum_{h=-\infty}^{\infty} \frac{\partial}{\partial \theta} \left(\begin{array}{c} r^{[n]} \widehat{f}(n) e^{in\theta} \right)$$
which means $\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}$ exist on D. Similarly, we can
that U is C^{∞} on D

Next we check $\Delta U = 0$.

Notice that

$$\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \sigma^2}$$

$$= \sum_{n=-\infty}^{\infty} \frac{\partial^{2}}{\partial r^{2}} \left(r^{\ln 1} \hat{f}_{(n)} e^{in\theta} \right) \\ + \frac{1}{r} \frac{\partial}{\partial r} \left(r^{\ln 1} \hat{f}_{(n)} e^{in\theta} \right) \\ + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \left(r^{\ln 1} \hat{f}_{(n)} e^{in\theta} \right)$$

So we only need to check that for given
$$n \in \mathbb{Z}$$
,
 $\Delta \left(r^{\ln l} e^{in \Theta} \right) = 0.$

Let us check it in the care when n=3.

$$\frac{\partial^2}{\partial r^2} \left(r^3 e^{i \cdot 30} \right) = 6 r e^{i \cdot 30}$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r^3 e^{i \cdot 30} \right) = 3 r e^{i \cdot 30}$$

$$\frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \left(r^3 e^{i \cdot 30} \right) = r \cdot (3i)^2 e^{i \cdot 30} = -9 r e^{i \cdot 30}$$

Hence $\Delta \left(Y^3 e^{i 3 \Theta} \right) = 0.$